RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 92(134), Number 1(9), Pages 34–54 (Mi sm3330)

This article is cited in 12 papers

Equivalent norms in spaces of entire functions

V. È. Katsnelson


Abstract: It is shown that if $E\subset\mathbf R^n$ is relatively dense with respect to Lebesgue mesure and $p\in(0,\infty)$, then for any entire function $f(z)$ of $n$ complex variables and of exponential type not exceeding $\sigma$ the inequality
$$ \int_E|f(x)|^p\,dx_1\dots dx_n\geqslant c\int_{\mathbf R^n}|f(x)|^p\,dx_1\dots dx_n $$
is satisfied, where $c$ is a constant depending only on $\sigma$, $L$, $\delta$ and $p$, but not on $f(z)$, and the integrals on both sides of the inequality converge or diverge simultaneously.
Bibliography: 11 titles.

UDC: 517.535+519.53

MSC: Primary 31B05, 32F05, 46E15; Secondary 30A44

Received: 06.09.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 21:1, 33–55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025