RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 92(134), Number 3(11), Pages 347–377 (Mi sm3352)

This article is cited in 4 papers

Analytic first integrals of nonlinear parabolic equations and their applications

M. I. Vishik, A. V. Fursikov


Abstract: First integrals of the nonlinear parabolic equation
\begin{equation} \frac{\partial u(t,x)}{\partial t}=\mathfrak U(u),\qquad x\in R^n,\quad t>t_0, \end{equation}
are considered, i.e. functionals $G(t,u)$ that are constant on solutions $u(t,x)$ of (1): $G(t,u(t,x))=\mathrm{const}$. Every first integral satisfies a first-order variational differential equation. A solution of the Cauchy problem is constructed for this equation. The method of constructing these solutions, i.e. first integrals, affords a number of corollaries concerning statistical characteristics of solutions of (1).
Bibliography: 4 titles.

UDC: 517.9

MSC: Primary 35K55; Secondary 35A30

Received: 17.05.1973


 English version:
Mathematics of the USSR-Sbornik, 1973, 21:3, 339–369

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025