RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 2, Pages 163–175 (Mi sm3367)

This article is cited in 2 papers

Asymptotic behavior of the eigenvalues of an anharmonic oscillator

N. M. Kostenko


Abstract: In this paper we study the properties of the spectrum of the boundary-value problem
$$ \varphi''+[\lambda-x^2-V(x)]\varphi=0,\quad-\infty<x<\infty. $$
Let $\lambda_k$ be the points of the spectrum of this problem, arranged in order of increasing absolute value. Our main result is
Theorem. {\it Let $V(x)$ satisfy the conditions
$$ |V(x)|\leqslant M,\quad|x|\leqslant L;\qquad|V(x)|\leqslant\frac M{|x|},\quad|x|>L. $$
Then for any $\varepsilon>0$
$$ |\lambda_k-2k-1|=o(k^{-1/2+\varepsilon})\ \text{for}\ k\to\infty. $$
}
Bibliography: 2 titles.

UDC: 517.942.932

MSC: 15A42, 03F10, 26D07, 26D15

Received: 05.04.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:2, 151–163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024