RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 3, Pages 398–429 (Mi sm3380)

This article is cited in 6 papers

Properties of solutions of linear evolutionary systems with elliptic space part

V. A. Kondrat'ev, S. D. Èidel'man


Abstract: We study the system $\mathscr L(t,x;\frac\partial{\partial t},D_x)u=f$, where $\mathscr L$ is an $N\times N$ matrix such that the matrix $\mathscr L(t,x;0,i,\sigma)$ is uniformly Petrovskii elliptic. We establish unimprovable estimates of the growth of the solutio belonging to a convex cone of the space $C^N$ in a band, in a halfspace, and in the entire space. These estimates are applied to obtain new uniqueness theorems for Cauchy's problem.
Bibliography: 12 titles.

UDC: 517.946

MSC: 35F10, 35J67, 35J25, 35A05, 35K15

Received: 22.04.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:3, 369–397

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024