RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 4, Pages 525–551 (Mi sm3384)

This article is cited in 9 papers

Stability of the problem of recovering the Sturm–Liouville operator from the spectral function

V. A. Marchenko, K. V. Maslov


Abstract: We consider a differential operator $\mathscr L=(h,q(x))$ generated by a Sturm-Liouville operation $l[y]=-y''+q(x)y$ on the linear manifold of finite twice-differentiable functions $y(x)$ satisfying the boundary condition $y'(0)-hy(0)=0$. Let $\rho(\mu)$ be the spectral function of this operator. From $\rho(\mu)$, as is well known, we can recover the operator $\mathscr L$, i.e. the number $h$ and the function $q(x)$. Let $V_\alpha^A$ be the set of operators $\mathscr L$ for which
$$ |h|\leqslant A,\qquad\int_0^x|q(t)|\,dt\leqslant\alpha(x)\quad(x<0<\infty). $$

We now investigate how much information about the operator $\mathscr L\in V_\alpha^A$ can be obtained if its spectral function $\rho(\mu)$ is known only for values of $\mu$ on a finite interval.
In the present article we obtain estimates for the difference in the potentials $q_1(x)-q_2(x)$, in the boundary parameters $h_1-h_2$ and in the solutions of the corresponding differential equations under the condition that the spectral functions of the two operators in $V_\alpha^A$ coincide on a finite interval.
Bibliography: 7 titles.

UDC: 517.43

MSC: 34B24, 47E05, 34L05, 47G20, 45J05, 34Dxx

Received: 10.10.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:4, 475–502

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025