RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 92(134), Number 3(11), Pages 491–502 (Mi sm3421)

This article is cited in 1 paper

Random partitions of sets with marked subsets

V. N. Sachkov


Abstract: We are given a uniform probability distribution on the partitions of a set $X$ of $m$ elements. For each realization of the random partition we define a random process of drawing marks: every subset of cardinality $k$ receives a mark with probability $p_k$. We find expressions for exact distributions of the number of marked subsets of cardinality $l$, the overall number of marked subsets and the number of elements in them. For certain concrete values $p_k=p_k(m)$, $k=1,2,\dots,$ we obtain the limit distributions of these random variables as $m\to\infty$.
Bibliography: 8 titles.

UDC: 519.2

MSC: Primary 60C05; Secondary 60F05

Received: 18.04.1973


 English version:
Mathematics of the USSR-Sbornik, 1973, 21:3, 485–498

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025