RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 92(134), Number 4(12), Pages 518–529 (Mi sm3425)

More on quasi-Frobenius rings

L. A. Skornyakov


Abstract: Let $R$ be a ring and $J$ its Jacobson radical. Let us set $J^1=J$, $J^\alpha=JJ^{\alpha-1}$, and $J^\alpha=\bigcap_{\beta<\alpha}J^\beta$ if $\alpha$ is a limit ordinal. We call a ring an annihilating ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left (right) ideal $I$ is $I$ itself. We prove that a ring $R$ is quasi-Frobenius if and only if it is a left self-injective annihilating ring and $J^\alpha=0$ for some transfinite $\alpha$.
Bibliography: 15 titles.

UDC: 519.48

MSC: 16A36, 16A34, 16A52

Received: 07.06.1973


 English version:
Mathematics of the USSR-Sbornik, 1973, 21:4, 511–522

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025