RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 82(124), Number 1(5), Pages 111–125 (Mi sm3439)

This article is cited in 2 papers

An estimate of the dimension of the null spaces of linear superpositions

B. L. Fridman


Abstract: In this article it is proved that for continuously differentiable functions $f_1(x,y),f_2(x,y),\dots,f_n(x,y)$ a region $U$ of the $x$, $y$ plane can be found such that the dimension of the space of vectors $(\varphi_1(t),\dots,\varphi_n(t))$ for which $\sum_{i=1}^n\varphi_i(f_i(x,y))=0$ in $U$, where $\varphi_i(t)\in L_2$, either equals infinity or else does not exceed the number $(n-1)n/2$. Superpositions of the form $\sum_{i=1}^n\psi_i(f_i(x,y))$ are also shown to be closed and nowhere dense in $L_2$.
Bibliography: 3 titles.

UDC: 517.51

MSC: 46E20, 26B40, 46E15, 46B03

Received: 25.06.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 11:1, 101–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025