RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 82(124), Number 2(6), Pages 220–223 (Mi sm3445)

This article is cited in 4 papers

On the problem of the normal image of a complete surface of negative curvature

B. E. Kantor


Abstract: In the first part of this note an example is constructed of a surface $z=z(x,y)$ satisfying the equation
\begin{equation} z_{xx}z_{yy}-z^2_{xy}=-1, \end{equation}
in the entire $(x,y)$ plane, whose normal image is a half-plane.
In the second part it is shown that the class of all integral surfaces of equation (1) defined in the entire $x,y$-plane has the property that their normal images cannot be infinite strips between parallel lines. Hence it follows, using results of N. V. Efimov, that the normal images of the above surfaces may only be planes or half-planes.
Bibliography: 2 titles.

UDC: 513.736.35

MSC: 14H50, 14H40, 14J80

Received: 20.05.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 11:2, 197–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024