RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 82(124), Number 3(7), Pages 423–443 (Mi sm3459)

This article is cited in 2 papers

Projective representations of finite groups over number rings

L. F. Barannik, P. M. Gudivok


Abstract: We solve the problem of finding the number $n(R,G)$ of nondecomposable projective representations of a finite group $G$ over the ring $R$ of all integers of a finite extension $F$ of the field of rational $p$-adic numbers $Q$. Also we clear up the question as to when all indecomposable projective $R$-representations of a group $G$ are realized by left ideals of crossed group rings of the group $G$ and the ring $R$. We note that for ordinary $R$-representations of a group $G$ the problem of the finiteness of the number $n(R,G)$ was investigated by S. D. Berman, I. Reiner, A. Heller, H. Yacobinski and one of the authors of the present article.
Bibliography: 30 titles.

UDC: 519.44

MSC: 20C25, 20C05, 20G25, 20C11, 13M10

Received: 01.10.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 11:3, 391–410

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025