RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 9, Pages 61–84 (Mi sm347)

This article is cited in 9 papers

Best constants in a class of polymultiplicative inequalities for derivatives

A. A. Ilyin

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences

Abstract: Best constants are found in a class of multiplicative inequalities with $k$ factors that give an estimate of the $C$-norm of a function (in $\mathbb R^n$ or on $\mathbb S^n$) in terms of the product of the $L_2$-norms of fractional powers of the Laplace operator. Special attention is given to the detection of the cases of equality of the corresponding constants on the sphere and in Euclidean space.

UDC: 517.5

MSC: 46E35, 26D10

Received: 25.08.1997

DOI: 10.4213/sm347


 English version:
Sbornik: Mathematics, 1998, 189:9, 1335–1359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025