RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 96(138), Number 4, Pages 633–642 (Mi sm3476)

On the Lebesgue constants of some classes of almost periodic functions

E. A. Bredikhina


Abstract: This paper is a study of the behavior of the Lebesgue constants of almost periodic functions of the classes $G(H)$ for which the characterizing property $H$ is a specified spacing for the spectra of the functions belonging to the class. Here $G(H)$ denotes the class of a.p. functions $f(x)$ which have the characterizing property $H$, satisfy the inequality $\sup_{-\infty<x<\infty}|f(x)|\leqslant1$, and whose Fourier exponents have a unique limit point $\Lambda^*=\infty$ or $\Lambda^*=0$.
Bibliography: 8 titles.

UDC: 517.51

MSC: Primary 42A84, 42A32; Secondary 42A44

Received: 28.10.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 25:4, 595–604

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025