RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 93(135), Number 4, Pages 611–620 (Mi sm3487)

This article is cited in 2 papers

On rational approximations of functions with a convex derivative

A. A. Abdugapparov


Abstract: Let $R_N[f]$ be the least uniform deviation of a continuous function $f(x)$ ($x\in[a,b]$) from the rational functions of degree not greater than $N$ ($N=2,3,\dots$).
Theorem. \textit{Suppose a function $f(x)$ is given on an interval $[a,b]$ $(-\infty<a<b<\infty)$ and is $p$ times differentiable $(p\geqslant1)$, its $p$th derivative being convex. Then
\begin{equation} R_N[f]\leqslant C_p(b-a)^pM_p\frac{\ln^3N}{N^{p+2}},\qquad N\geqslant2p, \end{equation}
where $C_p$ is a constant depending on $p$ and $M_p=\max\{|f^{(p)}(x)|\}$.}
The estimate is sharp for any $p=1,2,\dots$ and any modulus of continuity of the function $f^{(p)}$ if the factors of form $\ln^\gamma N$ are neglected.
Bibliography: 7 titles.

UDC: 517.51

MSC: Primary 41A20; Secondary 26A51

Received: 01.12.1972


 English version:
Mathematics of the USSR-Sbornik, 1974, 22:4, 619–629

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024