RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 83(125), Number 2(10), Pages 165–180 (Mi sm3506)

Representation of arbitrary functions by certain special series

A. P. Khromov


Abstract: Let $M(x,t)$ be continuous for $0\leqslant t\leqslant x$, $0\leqslant x\leqslant1$ and let $g(x)$ be of bounded variation in $[0,1]$. Further, let $M(x,t,\lambda)=\sum_{k=0}^\infty\lambda^kM_k(x,t)$, where $M_1(x,t)=M(x,t)$, and $M_k(x,t)=\int_t^xM_{k-1}(x,\tau)M(\tau,t)\,d\tau$ for $k>1$. The paper studies the problem of the representation of a certain class of functions by series whose partial sums are given by
$$ P_n(x,f)=\frac1{2\pi i}\int_{C_n}\frac{\varphi(x,\lambda)}{L(\lambda)}\int_0^1\int_0^xM(x,t,\lambda)f(t)\,dt\,dg(x)\qquad(n=1,2,\dots), $$
where $f(x)$ is the expanded function, $\varphi(x,\lambda)=\psi(x)+\lambda\int_0^xM(x,t,\lambda)\psi(t)\,dt$, $\psi(x)\in C[0,1]$, $L(\lambda)=\int_0^1\varphi(x,\lambda)\,dg(x)$ and is $\{C_n\}^\infty_{n=1}$ a sequence of circles in the $\lambda$-plane with common center at zero and radii $r_n\uparrow+\infty$. This problem contains, in particular, the problem of expansion in the eigenfunctions of an ordinary differential equation in $[0,1]$ with certain irregular decomposing boundary conditions.
Bibliography: 5 titles.

UDC: 517.512

MSC: 26B30, 26B40, 33E20, 34B27

Received: 26.11.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 12:2, 159–176

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025