Abstract:
The well-known formula for finding the area of a triangle in terms of its sides is generalized to volumes of polyhedra in the following way. It is proved that for a polyhedron (with triangular faces) with a given combinatorial structure $K$ and with a given collection $(l)$ of edge lengths there is a polynomial such that the volume of the polyhedron is a root of it, and the coefficients of the polynomial depend only on $K$ and $(l)$ and not on the concrete configuration of the polyhedron itself. A number of problems in the metric theory of polyhedra are solved as a consequence.