RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 80(122), Number 2(10), Pages 281–289 (Mi sm3618)

This article is cited in 22 papers

The distribution of poles of rational functions of best approximation and related questions

A. L. Levin


Abstract: Let $f(z)\in H_2$ ($|z|<1$), and let $e_n(f)$ and $r_n(f)$ be best approximations of $f$ by means of polynomials and rational functions of degree $\leqslant n$. The fundamental result of this work is the following theorem: if $\varlimsup_{n\to\infty}(e_n(f)-r_n(f))^{1/n}\leqslant\rho<1$, then $f(z)$ is analytic in the disk $|z|<\rho^{1/2}$. In particular, if $\lim_{n\to\infty}(e_n(f)-r_n(f))^{1/n}=0$, then $f(z)$ is an entire function.
Bibliography: 4 titles.

UDC: 517.53

MSC: 41A50, 26C15, 41A10, 41A20

Received: 09.01.1969


 English version:
Mathematics of the USSR-Sbornik, 1969, 9:2, 267–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024