RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 80(122), Number 2(10), Pages 290–304 (Mi sm3619)

This article is cited in 45 papers

Best methods of approximation and interpolation of differentiable functions in the space $C_{[-1,1]}$

V. M. Tikhomirov


Abstract: In this paper are computed the $n$-diameter of the class
$$ W_r=\{f(x):|f^{(r-1)}(x)-f^{(r-1)}(x')|\leqslant|x-x'|,|x|,|x'|\leqslant1\} $$
of functions defined on $[-1,1]$ in $C_{[-1,1]}$.
This problem reduces to the variational problem
\begin{gather*} \lambda_{nr}=\inf||x||,\\ x^{(r+1)}=2\sum_{k=1}^m(-1)^{k+1}\delta(t-t_k),\qquad-1\leqslant t_1\leqslant\dots\leqslant t_m\leqslant1,\quad m\leqslant n,\\ x^r(t)\equiv-1,\qquad t\leqslant-1, \end{gather*}
whose solution is described in Theorem 1 of the paper.
Bibliography: 6 titles.

UDC: 517.5+513.881

MSC: 26Cxx, 46A22, 47Axx, 41A10, 41A05

Received: 24.01.1969


 English version:
Mathematics of the USSR-Sbornik, 1969, 9:2, 275–289

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024