RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 80(122), Number 4(12), Pages 455–491 (Mi sm3637)

This article is cited in 31 papers

Boundary value problems for elliptic equations degenerate on the boundary of a domain

M. I. Vishik, V. V. Grushin


Abstract: We investigate the elliptic equation $Lu=f$ of order $2m$, degenerate on the boundary $\Gamma$ of a bounded domain $G$. In local coordinates $(x_1,\dots,x_n)$, introduced in a neighborhood $U(x_0)$ of the point $x_0\in\Gamma$ and in which $\Gamma\cap U(x_0)$ is given by $x_n=0$, the operator
$$ L(x;x_n;D^\alpha)=\sum_{|\alpha|\leqslant m}\alpha_\alpha(x)x_n^{l_\alpha}D^\alpha, $$
where $l_\alpha=\max(0,q\alpha_n+q'\alpha'-qr)$, $q\geqslant1$, $q'\geqslant0$. For $x_n=0$ the operator $Lu$ degenerates into the quasi-elliptic operator
$$ L_1u=\sum_{\frac rr'|\alpha'|+\alpha_n\leqslant r}\alpha_\alpha(x)D^\alpha\qquad(|\alpha'|\leqslant r'\quad(qr=q'r')). $$

In particular we study the case of transition, for $x_n=0$, of an elliptic operator into a parabolic operator.
Figures: 3.
Bibliography: 19 titles.

UDC: 517.946.9

MSC: 35J25, 35Sxx, 35J70

Received: 03.06.1969


 English version:
Mathematics of the USSR-Sbornik, 1969, 9:4, 423–454

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025