RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 80(122), Number 4(12), Pages 521–532 (Mi sm3641)

This article is cited in 6 papers

Quotient spaces and multiplicity of a base

V. V. Filippov


Abstract: The basic results of the note are the following two theorems.
Theorem 1.1. Let $f\colon X\to Y$ be a biquotient $\tau$-mapping and let the space $X$ have a base whose multiplicity does not surpass $\tau$. Then the space $Y$ also has a base whose multiplicity does not surpass $\tau$. \smallskip
Theorem 2.1. Let $f\colon X\to Y$ be a quotient $s$-mapping of a space $X$ with a pointwise-countable base on a $T_2$-space $Y$ of pointwise-countable type. Then the mapping $f$ is biquotient.
References: 9 titles.

UDC: 513.83

MSC: 54B15

Received: 10.12.1968


 English version:
Mathematics of the USSR-Sbornik, 1969, 9:4, 487–496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025