RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 97(139), Number 2(6), Pages 193–229 (Mi sm3648)

This article is cited in 36 papers

On a dual problem. I. General results. Applications to Frèchet spaces

Yu. F. Korobeinik


Abstract: Let $H$ be a separated locally convex space; $x_k\in H$, $x_k\ne0$, $k=1,2,\dots$ . The author shows that if $H$ is a Frèchet space or an $LN^*$-space, then the system $\{x_k\}$ is a basis (topological or absolute) in the closure of its linear span if and only if the system of equations $\varphi(x_k)=d_k$, $k=1,2,\dots$, has a solution $\varphi$ in $H'$ for any sequence $\{d_k\}$ from a certain space $E_1$ (respectively, from $E_2$ for an absolute basis).
Bibliography: 32 titles.

UDC: 517.52+513.88

MSC: Primary 46A35, 46A20; Secondary 46A05, 46E10, 46A45, 30A64, 30A98

Received: 16.04.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 26:2, 181–212

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025