RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 97(139), Number 3(7), Pages 379–394 (Mi sm3657)

This article is cited in 2 papers

On a sharp Liouville theorem for solutions of a parabolic equation on a characteristic

A. L. Gusarov


Abstract: The equation $u_t=Lu+c(x)$ is considered in the strip $0<t\leqslant T$. The operator $L=\sum_{i,j=1}^n\frac\partial{\partial x_i}\bigl(a_{ij}(x)\frac\partial{\partial x_j}\bigr)$ is a selfadjoint uniformly elliptic operator of second order, $a_{ij}\in C^2(\mathbf R^n)$, $c\in C^1(\mathbf R^n)$, $|D^\beta a_{ij}(x)|=o(|x|^{-|\beta|})$, $|\beta|=1,2$, and $|c(x)|=o(|x|^{-2})$. For a solution $u$ of this equation the following assertions are proved: if $|u(t,x)|=O(\exp\varphi(|x|))$ ($\varphi(r)\geqslant r^{2+\varepsilon}$ is an arbitrary increasing function of one variable) uniformly in $t$ and if in some cone on the characteristic $t=T$ we have $|u(T,x)|=O(\exp(-C\varphi(C'|x|)))$ ($C$ and $C'$ are constants which depend on the equation and the vertex angle of the cone), then $u(T,x)\equiv0$; if $u(T,x)|=O(\exp K|x|^2)$ and if in the cone we have $|u(T,x)|=O(\exp(-C(K+1/T)|x|^2))$ then $u(t,x)\equiv0$.
Bibliography: 11 titles.

UDC: 517.946

MSC: Primary 35K10; Secondary 35B05, 35K15

Received: 13.12.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 26:3, 349–364

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025