RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 1(9), Pages 42–54 (Mi sm3669)

On the completeness of the exponential system in nonconvex domains

I. S. Galimov


Abstract: Let $L(\lambda)=\sum_{j=1}^r A_je^{\lambda a_j}$, where $a_j$ ($1\leqslant j \leqslant r$) are the vertices of a convex polygon $\overline D$, and let $\{\lambda_\nu\}_{\nu=1}^\infty$ be the sequence of all of the zeros (which we assume to be simple) of $L(\lambda)$. Define $\Gamma\stackrel{\mathrm{df}}=\bigcup_{j=1}^r[0,a_j]$. For the system $\{e^{\lambda_\nu z}\}_{\nu=1}^\infty$, we construct a system of functions $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$ which has the biorthogonality property on $\Gamma$.
With the aid of the system $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$, we construct the Dirichlet series for a function $f(z)$ which is continuous on $\Gamma$. We prove the following uniqueness theorem: If all the coefficients of the series are zero, then $f(z)\equiv0$. It follows from this theorem that the system $\{\psi_\nu^*(z)\}_{\nu=1}^\infty$ is complete outside of $\Gamma$.
Bibliography: 3 titles.

UDC: 517.53

MSC: Primary 30A16, 30A18; Secondary 30A62, 30A82

Received: 07.10.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:1, 39–50

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024