RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 1(9), Pages 72–83 (Mi sm3671)

This article is cited in 1 paper

On the dimension theory of metrizable spaces with periodic homeomorphisms

S. A. Bogatyi, M. Madirimov


Abstract: For every metric space $X$ with homeomorphism $a\colon X\to X$ of prime period $p$ ($a^p=e_X$) we construct a zero-dimensional metric space $P$ ($\dim P=0$) with homeomorphism $b\colon P\to P$ of the same period $p$, together with a closed mapping $f\colon P\to X$ onto $X$, commuting with $a$ and $b$, such that $\operatorname{Ord}f\leqslant \dim X+1$ if $X$ is finite-dimensional and $\operatorname{Ord}f<\infty$ if $X$ is countable-dimensional.
Bibliography: 12 titles.

UDC: 513.83

MSC: Primary 54F45; Secondary 54C10

Received: 22.11.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:1, 67–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025