RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 2(6), Pages 163–177 (Mi sm3676)

This article is cited in 3 papers

Generalized Lyapunov theorem on Mal'tsev manifolds

V. V. Gorbatsevich


Abstract: The problem is studied of the extendability of a homomorphism $\mu\colon\Gamma\to G$, where $\Gamma$ is a lattice in a simply-connected nilpotent Lie group $N$, and $G$ is a linear algebraic group, to a homomorphism $\widetilde\mu\colon N\to G$ such that $\widetilde\mu|_\Gamma=\mu$. The case $\Gamma=\mathbf Z^n$ is considered in detail. The results obtained are applied to the study of reducibility of completely integrable equations on $N/\Gamma$.
Bibliography: 12 titles.

UDC: 519.46

MSC: Primary 22E40, 22E25, 20G20; Secondary 34C20, 34C40, 58F05

Received: 07.03.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:2, 155–168

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025