RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 2(6), Pages 194–225 (Mi sm3678)

This article is cited in 16 papers

Nonunimodular ring groups and Hopf–von Neumann algebras

L. I. Vainerman, G. I. Kats


Abstract: A number of authors have introduced ring groups as objects generalizing locally compact groups. An analogue of the Pontryagin principle of duality holds for ring groups. In this paper we introduce a wider class of ring groups, one including the locally compact groups.
A construction is given whereby to each ring group $\mathfrak G$ there is defined a dual ring group $\widehat{\mathfrak G}$; here $\widehat{\widehat{\mathfrak G}}=\mathfrak G$. By definition a ring group is determined by a $W^*$-algebra $\mathfrak A$ (the space of the ring group) equipped with an additional structure which allows $ \mathfrak A$ to be considered, in particular, as a Hopf–von Neumann algebra. When $\mathfrak G$ is a locally compact group, $\mathfrak A$ is the $W^*$-algebra of bounded measurable functions on $\mathfrak G$, considered in the natural way as operators in $L_2(\mathfrak G)$.
Bibliography: 15 titles.

UDC: 519.46

MSC: Primary 22D35, 46L10; Secondary 46K15

Received: 30.05.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:2, 185–214

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024