RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 2(6), Pages 300–334 (Mi sm3683)

This article is cited in 5 papers

Some questions in the theory of nonlinear elliptic and parabolic equations

M. I. Vishik, A. V. Fursikov


Abstract: For the nonlinear parabolic equation of order $m$
\begin{equation} \frac{\partial u}{\partial t}=-A(D)u+f(u,D^\gamma u),\qquad|\gamma|\leqslant m, \end{equation}
where the nonlinear part $f$ depends analytically on its arguments, in the case of periodic boundary conditions we prove a theorem about the unique solvability in a certain space of generalized functions if the initial condition is a eneralized function from the same class. We prove an analogous theorem for nonlinear elliptic equations.
We construct an asymptotic expansion (as $t\to\infty$) for the $\xi$th Fourier coefficient $v(t,\xi)$ of the solution $u(t,x)$ of a parabolic equation of the form (1).
Bibliography: 3 titles.

UDC: 517.9

MSC: Primary 35D05, 35J60, 35K55; Secondary 42A60, 46F15

Received: 15.01.1974


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:2, 287–318

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025