RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 3(7), Pages 358–384 (Mi sm3687)

This article is cited in 2 papers

Finite-dimensional algebras of integral $p$-adic representations of finite groups

P. M. Gudivok, S. F. Goncharova, V. P. Rud'ko


Abstract: Let $F$ be a inite extension of the field of rational $p$-adic numbers $Q_p$, $R$ he ring of integers of $F$, $G$ a finite group, $a(RG)$ the ring of $R$-representations of $G$ and $A(RG)=Q\otimes_Za(RG)$ ($Z$ is the ring of rational integers and $Q$ the rational number field). We study the algebra $A(RG)$ in the case where the number $n(RG)$ of indecomposable $R$-representations of $G$ is finite. In particular, for $G$$p$-group and $n(RG)<\infty$ we find a list of the tensor products of indecomposable $R$-representations of $G$ and obtain a description of the radical $N$ of $A(RG)$ and of the quotient algebra $A(RG)/N$. It turns out that in this case we always have $N^2=0$.
Bibliography: 26 titles.

UDC: 519.44

MSC: Primary 20C10; Secondary 16A46, 16A21

Received: 07.03.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:3, 336–361

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024