RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 2(10), Pages 163–184 (Mi sm3704)

This article is cited in 37 papers

Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation

Yu. A. Dubinskii


Abstract: In the study of the Cauchy–Dirichlet problem
\begin{gather} L(u)\equiv\sum_{|\alpha|=0}^\infty(-1)^{|\alpha|}D^\alpha A_\alpha(x,\,D^\gamma u)=h(x),\qquad x\in G, \\ D^\omega u\mid_{\partial G}=0,\qquad |\omega|=0,1,\dots, \end{gather}
infinite order Sobolev spaces
$$ \overset\circ W{}^\infty\{a_\alpha,\,p_\alpha\}\equiv\biggl\{u(x)\in C^\infty_0(G):\rho(u)\equiv\sum^\infty_{|\alpha|=0}a_\alpha\|D^\alpha u\|_{p_\alpha}^{p_\alpha}<\infty\biggr\}, $$
naturally arise, where $a_\alpha\geqslant0$ and $p_\alpha\geqslant1$ are numerical sequences. In this paper criteria for the nontriviality of $\overset\circ W{}^\infty\{a_\alpha,p_\alpha\}$ are established and the problem (1), (2) is investigated. Further, a theorem is obtained on the existence of the limit (as $m\to\infty$) of solutions of nonlinear $2m$th order boundary value problems of elliptic and hyperbolic type, from which, in particular, follows the solvability of the mixed problem for the nonlinear hyperbolic equation $u''+L(u)=h(t,x)$, $t\in[0,T]$, where $T>0$ is arbitrary.
Bibliography: 9 titles.

UDC: 517.946.9

MSC: Primary 46E35, 35J60, 35L35; Secondary 28A93

Received: 14.04.1975


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:2, 143–162

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025