RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 2(10), Pages 185–206 (Mi sm3705)

This article is cited in 1 paper

Wall groups of finite groups and $\Pi$-signatures of manifolds

G. A. Kats


Abstract: This article contains the evaluation of the image of the natural homomorphism $\chi$ from the even-dimensional Wall group $L_{2k}(\Pi)$ into the ring of complex representations of a finite group $\Pi$. The computations are carried out for finite groups acting freely and linearly on spheres, by means of a differential-topological interpretation of $\chi$; the Atiyah–Singer invariant is utilized as a tool.
Bibliography: 8 titles.

UDC: 513.836

MSC: 57D99, 57E25

Received: 19.06.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:2, 163–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024