RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 3(11), Pages 416–435 (Mi sm3718)

This article is cited in 97 papers

On the analytic continuation of holomorphic mappings

S. I. Pinchuk


Abstract: Let $D_1$ and $D_2$ be strictly pseudoconvex domains in $\mathbf C^n$ with real analytic boundaries $\partial D_1$ and $\partial D_2$, and let $\Omega$ be a neighborhood of the point $\zeta\in\partial D_1$ with $\Omega\cap\partial D_1$ connected. Assume that the mapping $f\colon\Omega\cap\overline D_1\to\mathbf C^n$ is holomorphic in $\Omega\cap D_1$, $C_1$ in $\Omega\cap\overline D_1$, and that $f(\Omega\cap\partial D_1)\subset\partial D_2$. The author proves that $f$ can be holomorphically continued to $\Omega\cap\partial D_1$. If the domain $D_2$ is a sphere $\{|z|<1\}$ and $\partial D_1$ is simply connected, then $f$ extends to a biholomorphic mapping from $D_1$ onto $D_2$.
Bibliography: 12 titles.

UDC: 517.55

MSC: 32D15

Received: 07.04.1975


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:3, 375–392

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025