RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 4(12), Pages 538–563 (Mi sm3723)

This article is cited in 11 papers

On lacunary series

I. M. Mikheev


Abstract: This paper investigates properties of trigonometric $S_p$-systems ($p>2$) and Banach systems. In particular, the following theorems are established.
Theorem 1. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be an $S_p$-system $(n_k$ integers, $p>2)$. Then if the series $a_0+\sum a_k\cos n_kx+b_k\sin n_k x$ converges on a set of positive measure it follows that $a_0^2+\sum a_k^2+b_k^2<\infty$. If the same series converges to zero on a set of positive measure, all its coefficients are zero}.
Theorem 2. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be a Banach system. Let $\alpha(\{n_k\},[a,b])$ be the number of terms of the sequence $\{n_k\}$ that lie on $[a,b]$. Then}
$$ \lim_{h\to+\infty}\sup_a\frac{\alpha(\{n_k\},[a,a+h])}h=0. $$

Bibliography: 12 titles.

UDC: 517.522.3

MSC: 42A44

Received: 15.04.1975


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:4, 481–502

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025