RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 2(10), Pages 229–262 (Mi sm3752)

This article is cited in 46 papers

Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval

V. M. Badkov


Abstract: Let $\sigma_p=\{p_n(t)\}_{n=0}^\infty$ be the system of polynomials orthonormal on $[-1,1]$ with weight
$$ p(t)=H(t)(1-t)^\alpha(1+t)^\beta\prod_{\nu=1}^m|t-x_\nu|^{\gamma_\nu}, $$
where $-1<x_1<\dots<x_m<1$, $\alpha,\beta,\gamma_\nu>-1$ ($\nu=1,\dots,m$), $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L(0,2)$ ($\omega(H,\delta)$ is the modulus of continuity in $C(-1,\,1)$). Consider the class of functions $(qL)^r=\{f(t):q(t)f(t)\in L^r(-1,1)\}$, where $q(t)=(1-t)^A(1+t)^B\times\prod_{\nu=1}^m|t-x_\nu|^{\Gamma_\nu}.$ Let $S_n^{(p)}(f)=S_n^{(p)}(f,x)$ ($n=0,1,\dots$) denote the partial sums of the Fourier series of a function $f$ with repect to the system $\sigma_p$.
In the paper, conditions are obtained on the exponents of the functions $p(t)$ and $q(t)$ and the exponent $r\in(1,\infty)$ that are necessary and sufficient for the boundedness in $(qL)^r$ of each of the operators $S_n^{(p)}(f,x)$ and $\sup_{n\geqslant0}\{|S_n^{(p)}(f,x)|\}$. Sufficient conditions for the convergence of the partial sums $S_n^{(p)}(f)$ to $f\in(qL)^r$ in the mean and almost everywhere in $(-1,\,1)$ are revealed as a consequence. It is proved that these conditions are best possible on the class $(qL)^r$ (for $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$ in the case of convergence almost everywhere). Estimates of the polynomials $p_n(t)$ and necessary and sufficient conditions for their boundedness in the mean are also obtained.
Bibliography: 26 titles.

UDC: 517.512.7

MSC: 42A20, 42A56

Received: 30.07.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:2, 223–256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024