RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 2(10), Pages 294–304 (Mi sm3755)

This article is cited in 4 papers

On a class of decompositions of semisimple Lie groups and algebras

V. V. Gorbatsevich


Abstract: Let $G$ be a semisimple Lie group, and $K$ a maximal compact subalgebra in $G$. In this paper we prove the existence of closed subgroups $G'\subset G$ such that $G'\cdot K=G$ and $G'\cap K=\{e\}$. Such subgroups are studied more explicitly in the case where $K$ is semisimple. Consideration of the infinitesimal analogue of the triple $(G,G',K)$ is basic.
Bibliography: 3 titles.

UDC: 519.46

MSC: 22E10, 22E60

Received: 26.12.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:2, 287–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025