RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 2(10), Pages 305–325 (Mi sm3756)

This article is cited in 1 paper

Spectral properties of generalized Toeplitz matrices

F. A. Berezin


Abstract: The asymptotic behavior of $N_n(\lambda)$, the number of eigenvalues less than $\lambda$, as $n\to\infty$ is found for a sequence of generalized Toeplitz operators $A_n$, along with the asymptotic behavior of $\operatorname{det}A_n$. It is shown that both asymptotic formulas are quasiclassical and connected with the quantization of classical mechanics whose phase spaces are products of two-dimensional spheres.
Bibliography: 12 titles.

UDC: 517.4

MSC: Primary 47B35, 15A57, 15A18, 81A17; Secondary 30A31

Received: 07.01.1974


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:2, 299–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024