RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 4(12), Pages 499–524 (Mi sm3766)

This article is cited in 2 papers

Magnus varieties in group representations

L. E. Krop, B. I. Plotkin


Abstract: We consider varieties of pairs $(A,\Gamma)$, where $A$ is an Abelian group and $\Gamma$ is a group acting in $A$ as a group of automorphisms. In the semigroup of all such varieties we distinguish certain subsemigroups. If $\Theta$ is a group variety, we denote by $\omega'\Theta=\mathfrak X$ the variety of pairs $(A,\Gamma)$ such that if $(A,\overline\Gamma)$ is the corresponding faithful pair, then its corresponding semidirect product $A\leftthreetimes\overline\Gamma$ belongs to $\Theta$. We obtain a number of results concerning the operator $\omega'$. A pair $(A,\Gamma)$ is called a Magnus pair if its lower stable series reaches zero at the first limit place and all factors of this series are free Abelian groups. A variety $\mathfrak X$ of pairs is a Magnus variety if all of its free pairs are Magnus pairs. We prove that if $\Theta$ is a polynilpotent group variety, then $\omega'\Theta$ is a Magnus variety.
Bibliography: 17 titles.

UDC: 519.41/47

MSC: Primary 20E10, 20E15, 20F55; Secondary 08A15

Received: 28.01.1974


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:4, 487–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024