RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 4(12), Pages 588–605 (Mi sm3770)

This article is cited in 2 papers

Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations

M. I. Vishik, A. V. Fursikov


Abstract: Let $ v(t,\xi)$ be the Fourier coefficients of the solution of the Cauchy problem for a nonlinear parabolic equation of the form
$$ \frac{\partial u}{\partial t}=-A(D)u+f(u,D^\gamma u),\qquad|\gamma|\leqslant m, $$
where $A(D)$ is a linear elliptic operator of order $m$ and $f(u,D^\gamma u)$ is the nonlinear part of the equation. Then $M(t,\xi_1,\dots,\xi_k,\sigma)$ are the moment functions of the equation, i.e. the average of the function $v(t,\xi_1)\cdots v(t,\xi_k)$ with respect to a probability measure $\mu_\sigma$, where $\sigma$ characterizes the degree of concentration of the measure. In this paper we give an asymptotic expansion for the functions $M(t,\xi_1,\dots,\xi_k,\sigma)$ as $\sigma\to0$.
Bibliography: 8 titles.

UDC: 517.9

MSC: Primary 35K55, 35K30, 41A60; Secondary 42A16

Received: 20.06.1974


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:4, 575–591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025