RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 8, Pages 35–50 (Mi sm3790)

This article is cited in 12 papers

Inverse operator of the generator of a $C_0$-semigroup

A. M. Gomilkoa, H. Zwartb, Yu. Tomilovc

a Institute of Hydromechanics of NAS of Ukraine
b University of Twente
c Nikolaus Copernicus University

Abstract: Let $A$ be the generator of a uniformly bounded $C_0$-semigroup in a Banach space $X$ such that $A$ has a trivial kernel and a dense range. The question whether $A^{-1}$ is a generator of a $C_0$-semigroup is considered. It is shown that the answer is negative in general for $X=\ell^p$, $p\in(1,2)\cup(2,\infty)$. In the case when $X$ is a Hilbert space it is proved that there exist $C_0$-semigroups $(e^{tA})$, $t\geqslant0$, of arbitrarily slow growth at infinity such that the densely defined operator $A^{-1}$ is not the generator of a $C_0$-semigroup.
Bibliography: 19 titles.

UDC: 517.986.7

MSC: Primary 47D60; Secondary 47D06

Received: 24.10.2006 and 12.02.2007

DOI: 10.4213/sm3790


 English version:
Sbornik: Mathematics, 2007, 198:8, 1095–1110

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024