RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 8, Pages 51–58 (Mi sm3795)

This article is cited in 6 papers

Lengths of lemniscates. Variations of rational functions

V. I. Danchenko

Vladimir State University

Abstract: The problem under consideration is the estimate of the length of the lemniscate
$$ L(P,r)=\{z:|P(z)|=r^n\}, $$
where
$$ P(z)=\prod_{k=1}^{n}(z-z_k),\qquad z_k\in\mathbb C,\quad r>0. $$
It is shown that $|L(P,r)|\le 2\pi n r$. A sharp estimate for the variation of a rational function along a curve of bounded rotation of the secant is also obtained.
Bibliography: 15 titles.

UDC: 517.535.2+517.535

MSC: Primary 30A10, 26D05; Secondary 31A15

Received: 08.11.2006 and 12.03.2007

DOI: 10.4213/sm3795


 English version:
Sbornik: Mathematics, 2007, 198:8, 1111–1117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024