RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 6, Pages 89–106 (Mi sm3826)

This article is cited in 6 papers

Integro-differential equation of non-local wave interaction

N. B. Engibaryan, A. Kh. Khachatryan

Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: The integro-differential equation
$$ \frac{d^2f}{dx^2}+Af=\int^\infty_0K(x-t)f(t)\,dt+g(x) $$
with kernel
$$ K(x)=\lambda\int^\infty_ae^{-|x|p}G(p)\,dp, \qquad a\geqslant0, $$
is considered, in which
$$ A>0,\qquad \lambda\in(-\infty,\infty), \qquad G(p)\geqslant0, \qquad 2\int^\infty_a\frac1p\,G(p)\,dp=1. $$
These equations arise, in particular, in the theory of non-local wave interaction. A factorization method of their analysis and solution is developed.
Bibliography: 9 titles.

UDC: 517.968.72

MSC: 45J05, 47J20

Received: 19.12.2003 and 12.03.2007

DOI: 10.4213/sm3826


 English version:
Sbornik: Mathematics, 2007, 198:6, 839–855

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025