RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 7, Pages 21–40 (Mi sm3873)

This article is cited in 56 papers

Finite-dimensional simple graded algebras

Yu. A. Bahturina, M. V. Zaiceva, S. K. Sehgalb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Alberta

Abstract: Let $R$ be a finite-dimensional algebra over an algebraically closed field $F$ graded by an arbitrary group $G$. In the paper it is proved that if the characteristic of $F$ is zero or does not divide the order of any finite subgroup of $G$, then $R$ is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field.
Bibliography: 24 titles.

UDC: 512.552

MSC: Primary 16W50; Secondary 12E15, 17A35

Received: 08.05.2007

DOI: 10.4213/sm3873


 English version:
Sbornik: Mathematics, 2008, 199:7, 965–983

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025