Abstract:
The basic result in this paper (Theorem 1) generalizes the well-known criterion of Kakutani to measures corresponding to arbitrary random sequences. The proof is based on Theorem 6, which gives a description of the set of convergence of a submartingale with bounded increments. The question of absolute continuity and singularity of measures corresponding to solutions of stochastic difference equations is studied. The dichotomy for Gaussian measures is obtained as a corollary.
Bibliography: 13 titles.