RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 2, Pages 107–128 (Mi sm3922)

Conditions for the invertibility of the nonlinear difference operator $(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, in the space of bounded number sequences

V. E. Slyusarchuk

Ukranian State Academy of Water Economy

Abstract: Necessary and sufficient conditions are found for the invertibility of the nonlinear difference operator
$$ (\mathscr Rx)(n)=H(x(n),x(n+1)),\qquad n\in\mathbb Z, $$
in the space of bounded two-sided number sequences. Here $H\colon \mathbb R^2\to \mathbb R $ is a continuous function.
Bibliography: 29 titles.

Keywords: invertibility of a nonlinear operator, telegraph equations.

UDC: 517.988.6

MSC: Primary 47B39, 35L60; Secondary 39A70

Received: 05.07.2007 and 15.08.2008

DOI: 10.4213/sm3922


 English version:
Sbornik: Mathematics, 2009, 200:2, 261–282

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025