RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1999 Volume 190, Number 9, Pages 3–20 (Mi sm424)

This article is cited in 8 papers

On the convergence of induced measures in variation

D. E. Aleksandrovaa, V. I. Bogacheva, A. Yu. Pilipenkob

a M. V. Lomonosov Moscow State University
b Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: Let $F_j$, $F\colon\mathbb R^n\to\mathbb R^n$ be measurable maps such that $F_j\to F$ and $\partial _{x_i}F_j\to\partial _{x_i}F$ in measure on a measurable set $E$. Conditions ensuring that the images of Lebesgue measure $\lambda \big|_E$ on $E$ under the maps $F_j$ converge in variation to the image of $\lambda \big |_E$ under $F$ are presented. For example, one sufficient condition is the convergence of the $F_j$ to $F$ in a Sobolev space $W^{p,1}(\mathbb R^n,\mathbb R^n)$ with $p\geqslant n$ and the inclusion $E\subset \{\det DF\ne 0\}$. Similar results are obtained for maps between Riemannian manifolds and maps from infinite dimensional spaces.

UDC: 517.5+519.2

MSC: Primary 28A33; Secondary 26B05, 28A20

Received: 31.08.1998 and 25.03.1999

DOI: 10.4213/sm424


 English version:
Sbornik: Mathematics, 1999, 190:9, 1229–1245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025