RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1999 Volume 190, Number 12, Pages 93–128 (Mi sm444)

This article is cited in 1 paper

The Dyer–Lashof algebra and the Steenrod algebra for generalized homology and cohomology

V. A. Smirnov

Moscow State Pedagogical University

Abstract: An analogue $\mathbb R$ of the Dyer–Lashof algebra $R$ and an analogue $\mathbb A$ of the Steenrod algebra $A$ are defined for generalized homology and cohomology theories. It is shown that if there is an $E_\infty$-multiplicative structure on a spectrum $\mathbb H$, then on the corresponding generalized cohomology $\mathbb H^*(X)$ of a topological space $X$ there is an action $\mathbb A\otimes \mathbb H^*(X)\to \mathbb H^*(X)$ of the Steenrod algebra, while if the space $X$ is an $E_\infty$-space, then on the generalized homology $\mathbb H^*(X)$ there is an action $\mathbb R\otimes \mathbb H_*(X)\to \mathbb H_*(X)$ of the Dyer–Lashof algebra. These actions are computed for cobordism of topological spaces. A connection is established between the Steenrod operations and the Landweber–Novikov operations.

UDC: 513.83

MSC: Primary 55S12, 55S10, 55N20; Secondary 57T05, 55N22, 55P42, 55S20, 55P47

Received: 03.06.1999

DOI: 10.4213/sm444


 English version:
Sbornik: Mathematics, 1999, 190:12, 1807–1842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025