RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 10, Pages 87–104 (Mi sm4503)

This article is cited in 14 papers

Multidimensional versions of Poincaré's theorem for difference equations

E. K. Leinartasa, M. Passareb, A. K. Tsikha

a Siberian Federal University
b Stockholm University

Abstract: A generalization to several variables of the classical Poincaré theorem on the asymptotic behaviour of solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of a system of $n$ equations with respect to a function of $n$ variables and 2) special solutions of a scalar equation. The classical Poincaré theorem presumes that all the zeros of the limiting symbol have different absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions of the corresponding difference equation.
Bibliography: 20 titles.

UDC: 517.55+517.965

MSC: Primary 39A11; Secondary 32A60

Received: 27.12.2007

DOI: 10.4213/sm4503


 English version:
Sbornik: Mathematics, 2008, 199:10, 1505–1521

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025