RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 2, Pages 89–106 (Mi sm4510)

This article is cited in 3 papers

Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$

S. G. Pribegin

Odessa National Maritime University

Abstract: Let $H^p(D^n)$ be a Hardy space in the unit polydisc
$$ D^n=\{z\in\mathbb C^n:|z_j|<1,\,j=1,\dots,n\} $$
and let
$$ R^{l,\alpha}_\varepsilon(f,e^{i\theta})=\sum_k(1-(\varepsilon|k|)^l)^\alpha_+\widehat f_ke^{ik\theta}, \qquad l>0, \quad \alpha>0, $$
be the generalized Riesz means of a function $f\in H^p(D^n)$. For certain standard relations between $p$, $l$, $n$ and $\alpha$ the following estimate is established:
$$ C_1(\alpha,l,p)\widetilde{\omega}_l(\varepsilon,f)_p \le\bigl\|f(e^{i\theta})-R_\varepsilon^{l,\alpha}(f,e^{i\theta})\bigr\|_p \le C_2(\alpha,l,p)\omega_l(\varepsilon,f)_p, $$
where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are integral moduli of continuity of order $l$.
Bibliography: 13 titles.

Keywords: series' means, generalized Riesz means, generalized Abel-Poisson means, right fractional Riemann-Liouville integral, right fractional derivative.

UDC: 517.550.2

MSC: 41A25, 42B30

Received: 04.07.2005 and 27.11.2008

DOI: 10.4213/sm4510


 English version:
Sbornik: Mathematics, 2009, 200:2, 243–260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025