RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 10, Pages 127–158 (Mi sm4524)

This article is cited in 3 papers

Local formulae for characteristic classes of a principal $\mathrm{GL}_n$-bundle

G. I. Sharygin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: Let $P$ be a principal $\mathrm{GL}_n$-bundle over a smooth compact manifold $X$ given by a finite atlas $\mathscr U=\{U_\alpha\}$ with transition functions $g_{\alpha\beta}$. A method is described for constructing the cocycles corresponding to the Chern classes of the bundle $P$ in the Čech complex with coefficients in the sheaf of de Rham forms on the manifold associated with the atlas $\mathscr U$. It is proved that for every rational characteristic class $c$ of the bundle $P$ there exists a cocycle in the aforementioned complex depending only on the gluing functions and corresponding to the class $c$ under the canonical identification of the cohomologies of the complex and the de Rham cohomologies of the manifold $X$ (a simple algorithm is given that enables one to calculate this cocycle explicitly). One of the key ideas leading to these results is the idea of using the notion of a twisting cochain for constructing the cocycles.
Bibliography: 14 titles.

UDC: 515.145.253+512.7

MSC: Primary 55R40; Secondary 55N30, 55U15, 57R20, 58A12

Received: 26.02.2008 and 17.06.2008

DOI: 10.4213/sm4524


 English version:
Sbornik: Mathematics, 2008, 199:10, 1547–1577

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024