RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 6, Pages 133–160 (Mi sm48)

This article is cited in 26 papers

On higher-order differential operators with a regular singularity

V. A. Yurko


Abstract: A boundary-value problem for the non-self-adjoint differential operators
$$ \ell y\equiv y^{(n)}+\sum_{j=0}^{n-2}\biggl(\frac{\nu_j}{x^{n-j}}+q_j(x)\biggr)y^{(j)}, \qquad 0<x<T, $$
with a regular singularity at zero is investigated. Theorems are obtained on completeness, on the expansion with respect to the eigen- and associated functions of the boundary-value problem on a finite interval, and on equiconvergence. In addition, the inverse problem is investigated.

UDC: 517.984

MSC: 34A55, 34B05, 34B20, 34B27, 34L10

Received: 09.03.1994


 English version:
Sbornik: Mathematics, 1995, 186:6, 901–928

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024