RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 5, Pages 143–160 (Mi sm480)

This article is cited in 25 papers

Approximation of functions of variable smoothness by Fourier–Legendre sums

I. I. Sharapudinov

Daghestan State University

Abstract: Assume that $0<\mu\leqslant 1$, and let $r\geqslant 1$ be an integer. Let $\Delta =\{a_1,\dots,a_l\}$, where the $a_i$ are points in the interval $(-1,1)$. The classes $S^rH^\mu_\Delta$ and $S^rH^\mu_\Delta(B)$ are introduced. These consist of functions with absolutely continuous $(r-1)$th derivative on $[-1,1]$ such that their $r$th and $(r+1)$th derivatives satisfy certain conditions outside the set $\Delta$. It is proved that for $0<\mu<1$ the Fourier–Legendre sums realize the best approximation in the classes $S^rH^\mu_\Delta(B)$. Using the Fourier–Legendre expansions, polynomials $\mathscr Y_{n+2r}$ of order $n+2r$ are constructed that possess the following property: for $0<\mu<1$ the $\nu$th derivative of the polynomial $\mathscr Y_{n+2r}$ approximates $f^{(\nu)}(x)$ $(f\in S^rH^\mu_\Delta)$ on $[-1,1]$ to within $O(n^{\nu+1-r-\mu})$, and the accuracy is of order $O(n^{\nu-r-\mu})$ outside $\Delta$.

UDC: 517.98

MSC: 42C10, 41A10

Received: 10.06.1998 and 17.05.1999

DOI: 10.4213/sm480


 English version:
Sbornik: Mathematics, 2000, 191:5, 759–777

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024