RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 6, Pages 145–154 (Mi sm487)

This article is cited in 2 papers

On the problem of the description of sequences of best rational trigonometric approximations

A. P. Starovoitov

Francisk Skorina Gomel State University

Abstract: For a fixed sequence $\{a_n\}^\infty_{n=0}$ of non-negative real numbers strictly decreasing to zero a continuous $2\pi$-periodic function $f$ is constructed such that $R^T_n(f)=a_n$, $n=0,1,2,\dots$, where the $R^T_n(f)$ are the best approximations of $f$ in the uniform norm by rational trigonometric functions of degree at most $n$.

UDC: 517.51+517.53

MSC: 41A20, 41A50

Received: 01.02.1999

DOI: 10.4213/sm487


 English version:
Sbornik: Mathematics, 2000, 191:6, 927–936

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025